Energy Transfer in a Fast-Slow Hamiltonian System

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Transfer in a Fast-slow Hamiltonian System

We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weak...

متن کامل

Geometric shadowing in slow-fast Hamiltonian systems

We study a class of slow-fast Hamiltonian systems with any finite number of degrees of freedom, but with at least one slow one and two fast ones. At ε = 0 the slow dynamics is frozen. We assume that the frozen system (i.e. the unperturbed fast dynamics) has families of hyperbolic periodic orbits with transversal heteroclinics. For each periodic orbit we define an action J. This action may be vi...

متن کامل

Drift of slow variables in slow-fast Hamiltonian systems

We study the drift of slow variables in a slow-fast Hamiltonian system with several fast and slow degrees of freedom. For any periodic trajectory of the fast subsystem with the frozen slow variables we define an action. For a family of periodic orbits, the action is a scalar function of the slow variables and can be considered as a Hamiltonian function which generates some slow dynamics. These ...

متن کامل

Equilibration of energy in slow–fast systems

Ergodicity is a fundamental requirement for a dynamical system to reach a state of statistical equilibrium. However, in systems with several characteristic timescales, the ergodicity of the fast subsystem impedes the equilibration of the whole system because of the presence of an adiabatic invariant. In this paper, we show that violation of ergodicity in the fast dynamics can drive the whole sy...

متن کامل

Heteroclinic Orbits in Slow–Fast Hamiltonian Systems with Slow Manifold Bifurcations

Motivated by a problem in which a heteroclinic orbit represents a moving interface between ordered and disordered crystalline states, we consider a class of slow–fast Hamiltonian systems in which the slow manifold loses normal hyperbolicity due to a transcritical or pitchfork bifurcation as a slow variable changes. We show that under assumptions appropriate to the motivating problem, a singular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2011

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-011-1317-7